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SUMMARY

Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of

genetic information. Understanding the genetic basis of these constraints is critical for manipulating the

recombination process to improve the resolution of genetic mapping, and reducing the negative effects of

linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested

association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse

lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome-wide

recombination rate variation was mostly defined by rare alleles with small effects together explaining up to

48.6% of variation. Most QTL were additive and showed predominantly trans-acting effects. The QTL affect-

ing the proximal COs also acted additively without increasing the frequency of distal COs. We showed that

the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possi-

ble deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights

into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleteri-

ous SNPs across the genome. The identified trans-acting additive QTL can be utilized to manipulate CO fre-

quency and distribution in the large polyploid wheat genome opening the possibility to improve the

efficiency of gene pyramiding and reducing the deleterious genetic load in the low-recombining pericen-

tromeric regions of chromosomes.

Keywords: crossovers, deleterious SNPs, interstitial CO QTL, nested association mapping, polyploid wheat,

recombination rate.

INTRODUCTION

Besides playing a critical role in meiotic division, recombi-

nation is one of the major factors that influences the preci-

sion of gene mapping studies, and along with random drift

and effective population size, defines the fate of genetic

variation in populations by affecting the efficiency of

selection acting on linked alleles. Recombination can break

an allele’s linkage with the genetic backgrounds that may

harbor other alleles with either deleterious or beneficial

effects, and increase the rate of selected allele fixation (Hill

and Robertson, 1966; Comeron et al., 2008). Thereby,
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heterogeneity in the frequency of recombination events

across the genome imposes different levels of constraint

on the reshuffling of genetic variants in breeding and map-

ping populations, making the identification of the major

determinants of recombination and the development of

approaches for its modification important goals for the

genetics of agricultural crops.

Intra-species variability in the recombination rate

observed for plants and animals (Dvor�ak and McGuire,

1981; Lynn et al., 2004; Esch et al., 2007; Pradillo et al.,

2012; Bauer et al., 2013; Dreissig et al., 2015; Ziolkowski

et al., 2017) was shown to be affected by both genes con-

trolling meiotic division and the distribution of local geno-

mic features and/or chromatin structure (Akhunov et al.,

2003; Yandeau-Nelson et al., 2006; Liu et al., 2009; Wijnker

et al., 2013; Rodgers-Melnick et al., 2015; Shilo et al., 2015;

Melamed-bessudo et al., 2016). Meiotically induced dou-

ble-stranded breaks (DSBs) are repaired through pathways

resulting in either crossover (CO) or non-crossover events,

which can be detected when the interaction of the DSB

region occurs between non-sister chromatids (Mercier

et al., 2015). Recent studies in model species, including

Arabidopsis, demonstrated the feasibility of manipulating

recombination by affecting meiotic genes in the CO path-

ways (Lieberman-Lazarovich et al., 2013; Emmanuel et al.,

2006; Higgins et al., 2008; Da Ines et al., 2013; Shilo

et al., 2015; Crismani et al., 2012; Kirik et al., 2006; Wang

et al., 2015; Colas et al., 2016). The ability to control the

rate and distribution of recombination events has the

potential to substantially accelerate the development of

new varieties by allowing quick assembly of novel benefi-

cial multi-allelic complexes and by fixing desirable haplo-

types in fewer generations. While these findings hold great

promise for plant breeding, their practical applications are

hindered by the limited understanding of the genetics of

recombination rate control in specific crops that may differ

in genomic organization, genome size, or ploidy level from

those of the model species (Mercier et al., 2015). For exam-

ple, some of the most important agricultural crops, like

wheat, maize, or barley contain large regions of the gen-

ome comprised of transposable elements, preferentially

located in the pericentromeric regions, in which recombi-

nation is severely suppressed (Akhunov et al., 2003; Sain-

tenac et al., 2011; Choulet et al., 2014; Wingen et al., 2017).

Due to the reduced efficiency of background selection,

these genomes were shown to be enriched for SNPs with

possible deleterious effects (Mezmouk and Ross-Ibarra,

2014; Liu et al., 2017). The reduction of this deleterious

genetic load is one of the possible strategies to accelerate

crop improvement. In addition, reduced recombination

also diminishes the efficiency of selection for favorable

alleles when they are linked with deleterious variants.

Therefore, the identification of genetic factors that can shift

CO distribution toward the pericentromeric chromosomal

regions would be important for making all genomic

regions equally accessible for selection.

The large genome size, polyploidy, and the availability

of novel genomic and genetic resources make wheat a

tractable system for studying multiple aspects of meiotic

recombination genetics in crops with complex genomes.

Here, we developed and densely genotyped a wheat NAM

population to study the genetic architecture of genome-

wide recombination rate variation and to identify QTL con-

trolling CO distribution and frequency. Using these data-

sets, we investigated various aspects of the genetics of

recombination rate control in an allopolyploid crop, and

studied the effects of genome-wide recombination rate

variation on the distribution of deleterious SNPs in the

wheat genomes. We showed that the recombination rate

variation along the chromosomes and among the gen-

omes affects the distribution of deleterious genetic load.

Using the identified QTL, we demonstrated that the distri-

bution of recombination events along the centromere–
telomere axis of chromosomes is genetically controlled by

multiple loci with additive effects. Our study provides valu-

able information for understanding the genetic architecture

of recombination rate in an allopolyploid crop, and lays

the foundation for developing approaches to manipulate

recombination rate distribution across the genome.

RESULTS

Genotyping NAM population

To develop a nested association mapping population, a

diverse set of 29 wheat accessions including four cultivars

and 25 landraces (henceforth, founder lines) was selected

to represent both the genetic and geographic diversity of

wheat (Figure 1a and Table S1). The former was assessed

using the 9K iSelect assay genotyping data generated for a

large worldwide collection of wheat accessions (Cavanagh

et al., 2013). Additional high-density SNP and InDel data

was generated for founder lines using the wheat exome

capture assay (WEC) (Jordan et al., 2015) and the 420K

Axiom array. The variant calling in the WEC dataset

mapped to the W7984 wheat reference genome (Chapman

et al., 2015) resulted in 638 045 SNPs and 63 022 bi-allelic

insertion–deletion (InDel) polymorphisms (Tables S2 and

S3). Genotyping using the 420K Axiom array yielded

149 685 bi-allelic polymorphisms (Table S4), 114 590 of

which are mapped to the W7984 reference genome. In

total, using these genotyping approaches we identified

over 800 000 bi-allelic polymorphisms segregating within

the NAM population. Consistent with previous results

(Wang et al., 2014; Jordan et al., 2015), the A and B gen-

omes were more polymorphic than the D genome (Fig-

ure S1a). The frequency spectrum of variants detected

using the Axiom array was shifted toward common alleles

consistent with ascertainment bias inherent in genotyping
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arrays (Figure S1b). No allele frequency shift was found for

the WEC variants except for the depletion of alleles among

unique variants (MAF = 1/29) due to filtering for alleles

present in at least two founders (see Experimental

procedures).

In addition, the Recombinant inbred lines (RILs) and

founders were genotyped using the 90K SNP array (Wang

et al., 2014) and by genotyping by sequencing (GBS) (Sain-

tenac et al., 2013). Nearly 4 billion Illumina reads were gen-

erated for all founder lines and NAM RILs, with an average

of 1.63 million reads per RIL (Table S5), and 3 million reads

per founder. Utilizing different SNP calling pipelines, we

detected 164 668 unique GBS SNP markers across 28 pop-

ulations with the majority of SNPs being family-specific

(Tables S6 and S7 and Figure S2a, b). In addition to SNPs,

a custom pipeline (Saintenac et al., 2013) was used to call

presence–absence variants (PAV) in GBS data, resulting in

331 090 PAVs (Tables S6 and S7), 64% of which were fam-

ily-specific. The 90K SNP array resulted in 57 687 polymor-

phic markers in the NAM population (Tables S8 and S9).

Both Axiom and 90K SNP array datasets showed an enrich-

ment for common alleles (Figures S1b and S2b), thereby

providing the opportunity to assess the allelic effects

across multiple genetic backgrounds. By combining

sequence- and array-based SNPs, and PAV, an average of

50,143 markers were placed onto family-specific genetic

maps (Figure S3 and Table S10).

Distribution of COs in family-specific genetic maps

The relatively small number of recombination events in bi-

parental mapping populations and high-density genotyp-

ing using the array- and sequence-based approaches

results in highly redundant marker data per recombination

bin defined by the recombination breakpoints on the chro-

mosomes. Genotyping errors and missing data in these

large datasets provide substantial challenges for map con-

struction algorithms (Ronin et al., 2017). Here, for genetic

map construction, the marker redundancy was removed by

pre-processing genotyping data using the clustering algo-

rithm implemented in Multipoint software (for details and

rationale see Experimental procedures). A representative

set of markers for each population was used for construct-

ing 28 family-specific genetic maps (Table S11). The aver-

age map size was 1,286 cM for the A genome (0.23 cM per

Mb), 1,178 cM for the B genome (0.19 cM per Mb), and

855 cM for the D genome (0.17 cM per Mb) (Table S12).

The map lengths of the D genome chromosomes were

consistently shorter than those in the A and B genomes.

One of possible explanations for these results can be an

elevated CO rate in more divergent genomes consistent

with the positive effect of inter-homolog polymorphism on

COs observed in Arabidopsis (Ziolkowski et al., 2015). We

investigated the effect of genetic diversity, which is lower

in the D genome compared with that in the A and B gen-

omes, on the estimates of map length and recombination

rate in the D genome. For this purpose, we generated sets

of A and B genome markers by randomly selecting the

same number of SNPs that were genotyped in the D gen-

ome of one of the NAM families (e.g. NAM19). The lengths

of genetic maps for the A, B and D genomes developed

using the NAM19 were 1240.5 cM (0.22 cM/Mb), 1160.0 cM

(0.19 cM/Mb), and 798.8 cM (0.16 cM/Mb), respectively.

Based on 15 genetic maps constructed using thinned SNP

datasets sampled from the NAM19 family, the average

lengths of genetic maps in the A and B genomes were

1110.8 � 15.5 cM (0.19 cM/Mb), and 987.3 � 18.1 cM
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Figure 1. Recombination rate variation in the wheat NAM population.

(a) Phylogenetic tree of wheat accessions used to develop the wheat NAM population using the pairwise divergence estimates of genome-wide SNPs.

(b) Violin plot showing the distribution of total crossovers (TCO) for each NAM family. NAM family distinction is the represented by number in parenthesis after

the name of the corresponding NAM founding parent. [Color figure can be viewed at wileyonlinelibrary.com].
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(0.16 cM/Mb). The estimates of recombination rate (cM/

Mb) using these simulated maps were close to the esti-

mates obtained for the D genome in the NAM19 family

(Table S12). Additionally, the average length of the simu-

lated A and B genome maps (2,098.1 cM) was lower than

the map lengths for the A and B genomes in NAM19

(2400.5 cM) or tetraploid durum wheat (2464 cM) (Macca-

ferri et al., 2015). These results suggested that the underes-

timation of double COs due to low marker density and

reduced genetic diversity in the D genome can contribute

to differences observed in the map length estimates

between the A/B genomes and the D genome.

Meiotic COs were detected using the family-specific

maps as a change in the phase of at least two parental alle-

les for each RIL in each NAM family (for rationale see

Experimental procedures), resulting in more than 102 000

recombination events in the NAM population (Table S13).

As a measure of recombination rate, we used the total

number of COs (TCO) for each individual RIL (Table S14).

We found variation within and between NAM families for

TCO (Figure 1b) with the overall mean of the entire popula-

tion 48.1 � 0.18, consistent with the estimates obtained in

wheat by immunolocalization of MLH1, which marks class I

COs (Mart�ın et al., 2014). The NAM8 family contained the

lowest TCO with a mean of 37.7 � 0.8, and the NAM24

family exhibited the highest TCO with the mean of

55.7 � 0.9 (Figure 1(b) and Table S15). It should be noted

that due to heterozygosity in the initial generations of

inbreeding, some COs observed in RILs can represent dif-

ferent meiotic events. In addition, the recombination rate

modifiers can change between heterozygous and homozy-

gous states during inbreeding, which may have a con-

founding effect on the estimates of recombination. These

confounding factors, however, would most likely result in

an underestimation of the number of QTL due to reduced

effect of recombination modifiers maintained in heterozy-

gous state. Thus, very likely in our families the number of

QTL harboring recombination modifiers with moderate or

weak effects are underestimated.

Meiotic recombination was distributed non-uniformly

along the chromosomes (Akhunov et al., 2003; Saintenac

et al., 2011; Rodgers-Melnick et al., 2015) and varied

among the wheat genomes (Figures 2a, b, S4–10 lower

panels and S11 and Table S13), with the distal one-third of

the chromosomal arms harboring three times more COs

than the pericentromeric regions (v2-test <10�4) (Fig-

ure 2b). Using the improved estimates of meiotic recombi-

nation rate in this study, we assessed its relationship with

the historic recombination events measured by calculating

linkage disequilibrium (LD) for SNPs in the population of

the founding lines. A significantly negative correlation

(rp
2 = �0.17, P-value < 10�13; Figures S4–10 lower panels)

between LD and the meiotic recombination suggests that

the historic decline in inter-variant linkage in the founders

is associated with the regions also showing high recombi-

nation rates in the bi-parental crosses.

The frequency of meiotic COs and founder divergence

To investigate the effect of genome-wide founder diver-

gence on the frequency of meiotic recombination, we uti-

lized polymorphic GBS tags mapped to the reference

genome and showing the presence of PAV and SNP varia-

tion (Table S16). Even though PAVs accounted for 57% of

the variants, only 36% of PAVs could be mapped to the ref-

erence, compared with 50% of the SNPs, suggesting that

nearly two-thirds of the PAVs have no match in the refer-

ence genome, indicating either sequence or structural

divergence of the NAM founders from the reference gen-

ome. On average, we detected 3 PAVs per Mb, and 27

PAVs per recombination bin on the genetic map

(Table S17).

The genome-wide divergence of the founder lines from

the common parent Berkut explained a relatively small pro-

portion of inter-family recombination rate variation mea-

sured as the TCO family mean (R2 = 0.06 for PAV, P-

value = 0.20 and R2 = 0.02 for SNPs, P-value = 0.48, Fig-

ure S12). However, in the regions in which founder lines

were identical-by-descent (IBD) to the common parent Ber-

kut, we found significantly more COs (non-parametric U-

test P-value ≤ 10�16) than in the regions showing no evi-

dence of IBD (Figure 2c). This result was consistent with a

study showing a negative effect of local sequence diver-

gence between wheat chromosomes on local recombina-

tion rate (Saintenac et al., 2011).

Distribution of predicted deleterious SNPs across and

among the wheat genomes

Using the estimates of recombination rate variation, we

investigated its effect on the genome-wide distribution of

non-synonymous SNPs with tentatively deleterious effects

on protein function. It was hypothesized that deleterious

genetic load is effectively removed from populations in

regions of high meiotic recombination (Hartfield and

Gl�emin, 2014). However, it is not known how gene redun-

dancy resulting from polyploidy would affect the genomic

distribution and frequency of predicted deleterious alleles

in the populations of a polyploid species. In wheat, we

identified 1168, 1594 and 437 predicted highly deleterious

SNPs, in the A, B and D genomes, respectively. Their pro-

portions relative to predicted non-deleterious alleles were

higher in the D genome (0.089) than in the A and B gen-

omes (0.076 and 0.081, respectively). However, only in the

A–D genome comparison the difference was statistically

significant (Fisher’s exact test, P = 0.01). Considering the

entire dataset of predicted deleterious and non-deleterious

SNPs, we found a significant reduction in the proportion of

deleterious SNPs in the high-recombining regions com-

pared with the rest of the genome (P = 7.8 9 10�5;
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Figure 2d). This reduction of genetic load in the high-

recombining chromosomal regions was consistent across

all three wheat genomes, but only statistically significant

in the A and B genomes (A genome, P = 6.0 9 10�4, B gen-

ome, P = 0.01, and D genome P = 0.20, Figure 2d). A lower

frequency of deleterious mutations was previously

observed in the regions of high recombination in many

species supporting a role for recombination in ‘purging’

deleterious alleles (Charlesworth and Charlesworth, 1998).

Recombination rate QTL mapping in the NAM families

QTL mapping. QTL mapping in individual NAM families

detected 40 QTL for TCO at a genome-wide significance

threshold of 0.05 (Table S18). Markers mapped to the refer-

ence genome were used to infer the 2-LOD support interval

boundaries of these 40 QTL regions (Table S18), resulting

in 27 non-overlapping, unique regions of the genome. TCO

QTL were detected in 22 of the 28 families, and are located

on 16 of the wheat chromosomes, mostly in the A and B

genomes (Table 1). The average effect size was 3.36 � 0.23

CO, which is a 7.0% change compared with the mean

(Table 1). The largest effects were detected in the NAM4

family in which the Berkut allele on the long arm of chro-

mosome 7B increased the recombination by 9.2 COs, and

another region on the same chromosome decreased

recombination by 9.1 COs.

Chromosome 7B harbored the most QTL of any chromo-

some, and the region at 51.2–59.2 cM was found in three

separate families (Figure S10). Overall, eight of 27 unique

TCO QTL regions (30%) were identified in more than one

family, and three regions in three families (Table S19). In

three of these overlapping QTL regions, the common par-

ent Berkut’s allele affected TCO positively in all families in

which these QTL were detected, and in one case on 4B,
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(a) Distribution of recombination rate (cM/Mb), genetic diversity, and deleterious allele density across the chromosomes group 7. Deleterious allele load is the

ratio (right y-axis) of number of potentially deleterious SNPs to the total number of coding region SNPs for each genetic bin on the scaled chromosome length.
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(c) Comparison of the total number of COs between the genomic regions of the NAM founders that share (red) or do not share (blue) IBD with the common par-

ent Berkut. The difference was statistically significant at P-value ≤ 10�16 (Mann–Whitney U-test).
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of the genome are shown in blue. Stars above the plot represent statistical significance within each genome comparison: ***P < 10�5; **P < 10�4; *P = 0.01.

[Color figure can be viewed at wileyonlinelibrary.com].

Table 1 The results of TCO QTL mapping in individual NAM
families

Trait Genome
Number
of QTL

Average
effecta

Effect
sizeb

Whole genome 40 3.36 7.0%
TCO A 18 3.16 6.6%

B 18 3.61 7.5%
D 4 3.17 6.6%

aAverage effect size is the magnitude of effect of the favorable
allele.
bEffect size is the percent effect with respect to the overall mean
for TCO.
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Figure 3. Recombination rate QTL mapping.

(a) The number of recombination increasing alleles in the RILs correlates positively with the number of TCOs (R2 = 0.48) for family NAM30.

(b) The number of positive alleles at pCO QTL (blue) correlates positively with the interstitial COs (R2 = 0.36) and shows no correlation (R2 = 0.01) with dCOs in

the distal (red) regions for family NAM29.

(c) The frequency of additive alleles with different effect sizes for the TCO QTL. The majority of TCO QTL alleles showed small effect.

(d) Magnitude of effect sizes relative to Berkut allele for TCO QTL identified using the SR and JCIM approaches. Positive values indicate that the Berkut allele

had a positive effect on recombination. Blue hues represent positive effects, i.e. Berkut allele favors increased recombination, the red hues represent negative

effects, i.e. Berkut allele suppresses recombination. Intensity of effect ranges with the darker shades of the boxes

(e) Venn diagram depicting overlap of bi-parental mapping versus joint mapping for TCO, pCO, and dCO.

(f) Venn diagram showing overlap of the joint mapped QTL regions detected for the TCO, pCO, and dCO.

(g) Summary of QTL mapping results in 28 NAM families for chromosome 6B. Each family is represented on the y-axis with horizontal dashed lines, starting

with NAM1 up to NAM30. Red, blue, and yellow bars represent QTL regions for TCO, pCO, and dCO, respectively, found in bi-parental mapping populations.

Green squares represent significant SR and JCIM regions. [Color figure can be viewed at wileyonlinelibrary.com].
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Berkut’s allele negatively affected TCO in both families.

Whereas at the remaining overlapping QTL, the direction

of Berkut’s allele effect was inconsistent between the fami-

lies, suggesting the existence of allelic series of genes. For

example, at the QTL located on chromosome 6A (88.0–
98.3 cM), Berkut’s allele had a positive effect in family

NAM27, and a negative effect in family NAM25. Similar

allelic series, with both positive and negative effects, were

observed in maize (Buckler et al., 2009). Overall, Berkut

alleles in these eight QTL regions positively affected TCO

in 13 families (65% of families) (Table S19), and other par-

ents contributed positive alleles in seven families (35% of

families).

Out of the 40 detected QTL, 13 (33%) remained signifi-

cant even at the Bonferroni-corrected threshold of 0.0018

(0.05/28) (Table S18). Two TCO QTL were mapped in two

families at both thresholds, chromosome 4A mapped in

families NAM19 and NAM30 (Figure S7), and a QTL on

chromosome 7B at 94–101 cM mapped in families NAM7

and NAM4 (Figure S10). However, due to the conservative

nature of Bonferroni correction, it appeared that many

valid QTL did not pass this strict significance threshold.

For example, a TCO QTL mapped to chromosome 4B in

families NAM19 and NAM30 was detected only in one fam-

ily at 0.0018 threshold. Similarly, a TCO QTL mapped to

chromosome 6B in three different families, was not

detected in any NAM family at the stricter threshold

(Table S18 and Figure S9).

Additivity of bi-parental family QTL. In the NAM families

with more than one recombination QTL, we estimated the

effects of multiple positive alleles on TCO (Figure S13).

There are 15 NAM families that contained more than one

QTL. Only one family did not exhibit a significant correla-

tion between the number of recombination favoring alleles

and the total amount of recombination events. Over all

families, the number of positive alleles explained up to

48% of the variation in recombination rate (Figure 3a and

Table S20). In the NAM30 family, four QTL were detected,

and we observed a phenotypic difference of more than 12

COs/genome between the RILs carrying only one and all

four recombination favorable alleles (Figures 3a and S13).

Cis- and trans-acting QTL. To discriminate between QTL

that affect recombination locally (cis-effect) from those that

have global effects (trans-effect), we removed recombina-

tion data for the chromosome harboring that particular

QTL from the calculations of the TCO, and repeated QTL

mapping analyses (Esch et al., 2007). By performing this

procedure for each of the 40 TCO QTL, we re-discovered

28, suggesting that 70% of the TCO QTL exhibited trans-

acting effects (Table S21).

QTL affecting the distribution of recombination along the

telomere-centromere axis. In most organisms including

wheat (Akhunov et al., 2003; Lynn et al., 2004; Saintenac

et al., 2011; Rodgers-Melnick et al., 2015), COs are more

likely to occur on the distal ends of the chromosomes, as

opposed to the pericentromeric regions. Our data are con-

sistent with this phenomenon (Figures 2a, b and S11), in

which 75% of the observed COs are located in the distal

ends of the chromosomes. However, it is unknown

whether the distribution of COs along the chromosomes

can be controlled genetically or are defined by the distribu-

tion of other genomic features.

Using COs grouped by the location of breakpoints in the

distal (1/3 of chromosome arm temini) or pericentromeric

(2/3 of chromosome arm adjacent to the centromere)

regions, we identified 24 QTL for pericentromeric COs

(henceforth, pCOs) with an average effect size of 1.2 � 0.05

COs, and 15 QTL for distal COs (henceforth, dCOs)

(Table S22), with an average effect of 2.3 � 0.12 COs. Only

one of these pCO QTL overlapped with the original TCO

QTL detected within the same family utilizing whole chro-

mosome data. Over 80% of dCO QTL regions overlapped

with the TCO QTL, consistent with 75% of the observed

recombination events coming from the distal ends. We

were able to partition the local and global effects on

Table 2 The additive effect of positive alleles at the trans-acting QTL for pericentromeric recombination rate on the number of crossovers
(COs) in the distal and pericentromeric regions of chromosomes

Family

Proportion of CO variance (R2) explained by the number of positive alleles at the
pericentromeric recombination rate QTL in RILsa

Maximum
effect sizeb

Number of
positive alleles/RILpCO dCO TCO

NAM6 0.28 1.0 9 10�4 0.08 4.0 2
NAM8 0.30 9.0 9 10�4 0.10 3.6 2
NAM10 0.20 5.6 9 10�2 0.18 4.6 3
NAM29 0.37 1.1 9 10�2 0.15 5.9 3

aStatically significant at P-value ≤ 0.05.
bThe maximum difference in the number of COs between RILs with 0 and maximal number of positive alleles at the QTL for pericentromeric
recombination rate.
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recombination of the pCO and dCO similarly as for TCO.

For the pCO QTL, 13 of 24 (56%) were trans-acting, sug-

gesting that over half the pCO QTL affect recombination

globally. Similarly, 60% (9 of 15) dCO affecting distal CO

were found to possess trans-effects, consistent with num-

ber of trans-acting TCO QTL.

For the four families with more than one trans-acting

QTL affecting pCOs, we investigated the effect of variation

in the number of positive alleles on the frequency of COs

in the distal and pericentromeric regions. The positive alle-

les acted additively and explained, on average, 29% of vari-

ation in the pericentromeric COs, while only 1.7 and 12%

of variation in the distal COs and TCO, respectively

(Table 2, Figure 3b, S14). For example, in family NAM29,

the RILs carrying three favorable alleles had an additional

six pericentromeric COs compared with the RILs carrying

no favorable alleles (Table 2, Figure 3b, S14). The observa-

tion that pCO and TCO QTL regions show little overlap,

and that combining additive trans-acting pCO QTL

increases COs in the pericentromeric region without affect-

ing distal COs (Table 2), suggests the possibility that differ-

ent genetic factors could contribute to the distribution of

recombination events between the pericentromeric and

distal chromosomal regions. These results also suggest

that by combining the alleles of trans-effect QTL it should

be possible to direct recombination to the pericentromeric

regions of wheat chromosomes.

Joint mapping of recombination QTL in the NAM

population

In general, the NAM design allows for mapping QTL

across families, while adjusting for the common parent

family structure. The NAM design increases the resolution

and power of QTL detection over traditional bi-parental

QTL mapping, especially for alleles that are shared across

families. We took advantage of the NAM design to per-

form joint stepwise regression (SR) and joint inclusive

composite interval mapping (JICIM) (Buckler et al., 2009)

of recombination QTL (Tables S23–S25). We detected 15

major SR QTL (Table S23) that explain more than 48% of

the variance in TCO in the NAM population, and found

evidence for nine additional minor JICIM QTL regions

(Table S24). The average allele effects of the TCO QTL

mapped using joint mapping across all families was

3.94 � 0.18 COs (Figure 3c, d and Tables S24 and S25), an

8.2% change in TCO rate relative to the average. There

were more QTL alleles increasing CO rate than decreasing

it with respect to the common parent allele (Figure 3c).

The largest effects detected were found on chromosome

7B QTL, consistent with the bi-parental mapping results.

Of the 24 joint mapping QTL detected, two SR loci located

within 1 cM of each other were detected on chromosome

5B, while the region on chromosome 7B at 51.19 cM pos-

sessed three separate JICIM QTL intervals and one SR

QTL, thus identifying 20 unique, significant regions in the

genome (Figures S4–S10 upper panels). Together, joint

mapping found evidence of QTL located on 13 chromo-

somes that affect COs in the NAM population (Figures 3d

and S4–S10 upper panels). Nine of the 14 unique SR QTL

regions (64%) and four of the seven unique JICIM QTL

regions (57%) fall within the 27 unique TCO QTL regions

identified in the single-family analyses at the 0.05 signifi-

cance threshold (Table S18). At the more strict Bonfer-

roni-corrected significance threshold (0.0018), QTL

detected in single-family analyses showed an even smal-

ler overlap with QTL detected using joint mapping

approaches. Out of 10 QTL regions mapped by single-

family analyses, only three QTL were identified by SR and

two QTL were identified by JICIM. These results further

corroborate our earlier conclusion (see single-family QTL

mapping results) that the Bonferroni-corrected signifi-

cance threshold likely results in an increased false-nega-

tive rate. Overall, 13 of the 20 (65%) QTL regions detected

by joint mapping overlapped with the 27 unique single-

family QTL regions. Likewise, 48% (13 of 27) of unique

regions identified by single-family QTL analysis are

detected by joint mapping approaches (Figure 3e). The

modest overlap between the QTL detected in the single-

family analyses and joint mapping observed in our study

was previously reported in the maize NAM population

(Ogut et al., 2015). It was suggested that the design of the

NAM population allows for detecting more common QTL

with minor effects, it also may have reduced power of

detecting rare QTL unique to each family (Ogut et al.,

2015), suggesting the complementary nature of using

multiple mapping strategies to dissect QTL affecting

traits.

In terms of numbers of unique QTL regions affecting

traits, and the magnitude of effect sizes for QTL, joint map-

ping and single-family mapping approaches were similar,

but the mapping resolution was increased using joint map-

ping, as most QTL fall to a single genetic position or adja-

cent intervals on the reference map. The NAM design

allowed for assessing the effect of the Berkut alleles in dif-

ferent genetic backgrounds. Across all QTL and all families,

joint mapping detected that ~60% of Berkut alleles had

positive effect on CO rate (Figures 3c, d and S15). Thereby,

40% of recombination favoring alleles were contributed by

the other parents. Similar to findings from the maize flow-

ering time QTL mapping study (Buckler et al., 2009), we

found that the direction of QTL effects was not consistent

across families indicating the presence of allelic series at

QTL (Figure 3d and Tables S24 and S25). The distribution

of recombination allele effect sizes was similar to that

observed for quantitative traits (Buckler et al., 2009), in

which the majority of effect sizes observed are small, and

major effect alleles are more rare in the population (Fig-

ures 3c and S15). However, in comparison with QTL
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identified for various quantitative traits in maize (Buckler

et al., 2009; Brown et al., 2011), recombination QTL in

wheat were present at a low frequency (Figure S16).

Stepwise regression and JICIM mapping for the pCO

trait detected 10 and five QTL, respectively (Tables S23–
S25), with an average effect of 0.77 � 0.04 COs (Fig-

ure S15). The region on chromosome 2B from 59 to 61 cM

was defined by 2 JICIM intervals and also contained one

locus detected by SR; the region on chromosome 3A at

20.49 cM was detected by both JICIM and SR mapping.

Together these QTL were mapped to 12 unique genomic

regions and explained 38.9% of variation in pCOs. Seven

of these 12 pCO QTL regions (58%) were also detected in

the bi-parental mapping families for pCO QTL (Figure 3e),

and five of these 12 (42%) co-localized with the TCO QTL

detected by joint mapping (Figure 3f).

Joint mapping of dCOs detected six SR QTL and nine

minor JICIM QTL (Tables S23–S25), with an average effect

size of 1.88 � 0.09 COs (Figure S15), together explaining

41% of the observed trait variation. The region on chromo-

some 1B at 44.4 cM was detected in two JICIM intervals,

giving 14 unique regions affecting dCOs. Eight of these 14

unique dCO QTL regions (57%) overlapped with dCO QTL

regions detected within the NAM families; eight of 12

(67%) unique single-family QTL regions for dCO over-

lapped with the dCO QTL regions detected by joint map-

ping (Figure 3e). Five of the joint mapping dCO QTL co-

localized with TCO QTL detected by joint mapping (Fig-

ure 3f). Only four QTL regions for dCO and pCO detected

by joint mapping overlapped, suggesting some uncoupling

of genetic factors affecting recombination events in the

distal and proximal regions of wheat chromosomes.

Refined recombination rate QTL regions contain

conserved meiotic genes

Using a conservative approach to define genomic intervals

affecting recombination rate mapped in the individual

NAM families (detected in at least two families), we find

eight regions affecting TCO, six regions affecting pCO, and

three regions affecting dCOs (Table S19). For TCO, all four

regions in which the parental effect estimates were in the

same direction, we also detected the region or a region in

close proximity using joint mapping, confirming its power

to detect regions in which alleles are shared across fami-

lies. The four regions not detected include the region on

chromosome 4A (111 cM) harboring QTL with opposite

allelic effects in three families. In NAM30, the Berkut allele

had a positive effect, while in NAM19 and NAM7, the Ber-

kut allele had a negative effect of similar magnitude. For

QTL on chromosome 7B (94–100 cM), also detected in

three families, NAM 4 had an allele with large negative

effect, while NAM6 and NAM7 have positive effect allele

with smaller effect sizes. The QTL region on chromosome

6A (88–98 cM), also had alleles with opposing signs in

NAM25 and NAM27, as did the QTL region on chromo-

some 7A (0–30 cM) in NAM20 and NAM26 that have the

same size effects in different directions.

Incorporating the joint mapping results with the bi-par-

ental QTL mapping, we were able to narrow the candidate

regions affecting variation in recombination to 14 regions

spanning 12 chromosomes (Table S26), supporting the

idea of multiple loci affecting recombination within the

NAM population. The most consistently detected regions

included the regions of chromosome 1A at 41–49 cM, chro-

mosome 2B at 59–61 cM, and on chromosome 6B at 43–
48 cM, which were detected by joint mapping for each

component of TCO (Figure 3g). Using the joint mapping

approach, we also detected two regions for both TCO and

dCOs traits on chromosome 1B at 44 cM, and on chromo-

some 4B at 50–58 cM.

Candidate gene searches in these 14 regions included

orthologs of many genes previously shown to effect

recombination in wheat and other species, including well-

conserved meiotic genes, such as, SPO11-2, RAD51, DMC1,

FANCM, RAD54, MutS, RECQ4, TOP3a, HEI10, ZYP1, and

PRD3 (Lawrence et al., 2017) (Table S27). In some cases,

we uncover syntenic regions of chromosomes that harbor

homoeologs of these conserved recombination genes. For

instance, we find the syntenic regions of 2A and 2B at

59.2 cM and 59.2 cM respectively, in which both the A and

B homologs of MSH3 and ZYP1 are located. Similar cases

are found on chromosomes 6A and 6B, in which wheat

homologs of HEI10 are detected at 50.2 cM and 47.8 cM,

respectively. In addition to these candidates, we find

regions of interest that contain other multiple homoeologs

of DMC1, RecQ helicase, and RAD23b (Table S28) in more

than one wheat genome. Although, these results suggest

the possibility that variation at these genes’ loci may con-

tribute to natural variation in recombination rate among

wheat accessions, further studies aimed at confirming the

role of these wheat homologs in controlling CO frequency

are needed. In addition to QTL harboring conserved mei-

otic genes, there were recombination QTL regions lacking

a priori candidate genes, which suggests that other

uncharacterized determinants of recombination rate varia-

tion are present in the population.

DISCUSSION

Here, we developed a spring wheat NAM population and

used it to dissect the genetic architecture of recombination

rate variation, and to study the relationship between

recombination, genetic variation, and deleterious SNPs in

an allopolyploid crop with a large, highly repetitive gen-

ome. This NAM population further expands the number of

multi-parent mapping populations available to the wheat

community for studying the genetic architecture of com-

plex traits (Cavanagh et al., 2013; Bajgain et al., 2016;

Gardner et al., 2016; Wingen et al., 2017).
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The uneven distribution of recombination along the

wheat chromosomes was shown to have a profound

effect on the distribution of genetic diversity (Akhunov

et al., 2010; Jordan et al., 2015), especially on the distri-

bution of non-synonymous mutations with potentially

deleterious effects on protein function. As these delete-

rious alleles may affect agronomic traits, they have

attracted attention as potential targets for trait improve-

ment (Yang et al., 2017). While reduced deleterious

allele load in the high-recombining regions was demon-

strated in several diploid crops, such as maize, rice,

and grape (Mezmouk and Ross-Ibarra, 2014; Liu et al.,

2017; Zhou et al., 2017), it remained unclear how the

distribution of deleterious alleles is affected by poly-

ploidy and the resulting relaxation of selection con-

straints on duplicated genes. The finding that all three

wheat genomes show similar patterns of deleterious

allele distribution along chromosomes, suggests that

polyploidy does not affect the negative correlation

between recombination rate and deleterious alleles pre-

viously found in diploid plants (Mezmouk and Ross-

Ibarra, 2014; Liu et al., 2017). The deleterious alleles in

allopolyploid wheat are likely still under selection that

is more effective in the regions of high recombination,

and tends to favor the retention of functional duplicated

homoeologs. These results are consistent with earlier

observations showing that many genes in wheat are

transcriptionally active and likely functional (Akhunova

et al., 2010; Pfeifer et al., 2014).

We found no significant differences in the proportion of

deleterious to non-deleterious alleles in the high and low-

recombining regions of the D genome compared with that

in the A and B genomes. One of the possible explanations

is the recent population bottleneck associated with the

recent whole-genome merger between tetraploid wheat

and the ancestor of the wheat D genome about

10 000 years ago, and the subsequent gene flow between

wheat and tetraploid ancestral populations (Dvor�ak et al.,

2006; Jordan et al., 2015). This gene flow was suggested

to play a significant role in restoring the diversity of the A

and B genomes, possibly increasing both the effective

population size and the efficiency of selection against

deleterious alleles. The inability of wheat – Ae. tauschii

hybrids to produce fertile progeny was proposed as one

of the main reasons for reduced diversity in the wheat D

genome (Akhunov et al., 2010) that likely resulted in

increased genetic drift and reduced the efficiency of

selection.

We applied single-family, and joint-linkage mapping in

the wheat NAM population to gain insights into the genetic

architecture of recombination rate variation in an allopoly-

ploid crop with a large, highly repetitive genome. Irrespec-

tive of the applied thresholds, we found that 48% of QTL

mapped in single-family analyses overlapped with QTL

mapped using the joint mapping approach. These results

were consistent with the results of a recent study per-

formed using the maize NAM population (Ogut et al.,

2015), in which it was shown that the proportion of over-

lapping QTL identified by single-family analysis and by

joint mapping can vary for different traits and often

showed small overlap. For example, between 36 and 10

QTL for oil content detected using single-family and joint

mapping, respectively, only four (11%) overlapped. Simi-

larly, between the 31 single-family and nine joint mapping

QTL for days to anthesis trait, only six (24%) overlapped.

The differences in the number of QTL mapped using differ-

ent approaches were attributed to the lower power of the

joint mapping approach to detect rare QTL compared with

the single-family analysis approach (Ogut et al., 2015). This

study and our results suggest that the usage of both sin-

gle-family and joint mapping approaches with NAM popu-

lations might provide a more comprehensive view of the

traits’ genetic architecture and help to identify rare, family-

specific QTL of biological interest.

The NAM design allowed us to assess the allelic effects

of common parent alleles across different genetic back-

grounds. While 60% of the Berkut alleles showed a positive

effect on CO rate in the NAM population, the direction of

the change was not consistent across families, indicating

the dominance of the alternative parent’s allele at nearly

40% of loci. Similar changes in the direction of the com-

mon parent allele effects found in the maize NAM popula-

tion for flowering time QTL (Buckler et al., 2009), and were

attributed to allelic series of genes that exist at a limited

number of QTL. In wheat, allelic variation at homoeolo-

gous gene loci with redundant function might also have a

confounding effect on the direction of the allelic affect at

recombination QTL. While the low resolution of mapping

does not allow us to precisely identify gene homoeologs,

the existence of QTL at the homoeologous regions of chro-

mosomes suggests the possibility that different gene

homoeologs in different lines might control meiotic recom-

bination in wheat. Further studies focusing on functional

validation of meiotic gene homoeologs will be required in

the future to test this hypothesis.

Within our trans-acting QTL regions, we find candidate

genes known for their involvement in meiotic recombina-

tion, suggesting that these genes may contribute to the

genome-wide recombination rate variation among the

NAM founders. However, the lack of known meiotic candi-

date genes in some trans-acting QTL regions suggests

that other previously uncharacterized genetic factors or

genes may affect variation in recombination rate in

wheat.

The frequency distribution of alleles with different effect

sizes in the population was similar to that observed for the

majority of quantitative traits (Buckler et al., 2009; Brown

et al., 2011), suggesting that recombination rate variation

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2018), 95, 1039–1054

1048 Katherine W. Jordan et al.



among wheat lines mostly results from variation in a num-

ber of alleles with small rather than large effects. However,

in contrast to other quantitative traits in maize (Buckler

et al., 2009; Brown et al., 2011), based on joint-linkage

mapping, the majority of alleles affecting recombination

rate were family-specific with only 30% of alleles being

shared across the NAM families, suggesting that multiple

founder-specific genetic factors might define recombina-

tion rate variation in wheat. The additivity of their effects

suggests the possibility of increasing recombination rate in

wheat by pyramiding multiple alleles of these QTL. These

alleles are of potential value for crop improvement, as it

was suggested that the selection for increased recombina-

tion rate combined with selection for the traits of interest

(Hill and Robertson, 1966; Mcclosky and Tanksley, 2013)

may accelerate the rate of genetic gain.

Increasing recombination in the identified trans-acting

pericentromeric chromosomal regions (Akhunov et al.,

2003; Saintenac et al., 2011) has the potential to substan-

tially increase the efficiency of selection for favorable alle-

lic variants located in these regions. Moreover, the results

in our study suggest that increased recombination in the

pericentromeric regions might also contribute to reducing

the deleterious genetic load in these regions. Recently, the

possibility of increasing the interstitial CO rate by increas-

ing temperature (Higgins et al., 2012) was demonstrated in

barley. Our results provided evidence for the existence of

trans-genetic factors, which act additively to promote COs

in the pericentromeric regions without the concomitant

increase in the number of COs in the distal regions. Com-

bining the allelic variants of these QTL provides an alterna-

tive path to increasing the interstitial CO rate.

CONCLUSIONS

Our study suggests that the QTL affecting recombination

rate and distribution mapped using the wheat NAM popu-

lation can be exploited for manipulating CO frequency. By

combining positively or negatively trans-acting QTL, gen-

ome-wide recombination can be increased to break link-

ages or decreased to quickly fix beneficial haplotypes,

respectively. Even in the genetically redundant polyploid

genome, the distribution of crossovers was shown to be

one of the main factors affecting the distribution of poten-

tially detrimental allelic variants resulting in their accumu-

lation in the low-recombining pericentromeric regions of

wheat chromosomes spanning nearly 2/3 of the genome.

The reduction of this deleterious genetic load is one of the

possible strategies for crop improvement, and can likely be

achieved by increasing the interstitial recombination rate.

The identification of trans-acting QTL in our study that can

promote recombination in the pericentromeric regions

provides the possibility for reducing deleterious genetic

load in these low-recombination regions of the wheat

chromosomes.

EXPERIMENTAL PROCEDURES

Plant material

Twenty-nine spring wheat accessions representing global and
genetic diversity were chosen as parental lines (Table S1 and Fig-
ure 1a) to create a spring wheat nested association mapping
(NAM) panel (Yu et al., 2008; Buckler et al., 2009). The common
parent used to create the 28 families was photoperiod insensitive
cultivar ‘Berkut’ that is included into the study because it repre-
sents one of the broadly adapted photoperiod insensitive cultivars
developed by the international breeding program of CIMMYT. As
most other NAM founders are non-adapted wheat landraces,
crossing with ‘Berkut’ allows for testing the phenotypic effects of
landrace alleles in diverse environments. Recombinant inbred
lines (RILs) for each cross were developed by self-pollination for
five generations using single seed descent. The F6 families were
increased and evaluated for height and heading date to select the
final set of 75 semi-dwarf and early heading lines resulting in a
population of 2100 RILs (Table S5).

A seed from each founder line and F7 NAM RIL was grown
under greenhouse conditions. In total, 50 mg of plant tissue was
collected from 2-week-old seedlings and DNA was extracted
using the Qiagen DNeasy 96 Plant Kits (Qiagen, Venlo, Nether-
lands). Eluted DNA was quantified using Picogreen (Life Tech-
nologies, Carlsbad, CA, USA) and then normalized using the
QIAgility robot (Qiagen) to obtain the concentration required for
various sequencing and genotyping protocols.

High-density genotyping of the NAM founders

Sequence capture. The founder lines were analyzed using the
Nimblegen exome capture assay as a part of the Wheat HapMap
project (Jordan et al., 2015). Additional lines were sequenced
using the same exome capture assay following the Wheat Hap-
Map project protocols at the KSU Integrated Genomics Facility.
The alignment and variant calling approaches applied and param-
eters applied were similar to those previously described in the
Wheat HapMap project (Jordan et al., 2015), except for using the
W7984 wheat reference genome assembly developed by Chapman
et al. (2015) (Chapman et al., 2015). Similar to the Axiom dataset
(see below), all heterozygous variants were treated as missing
data. The filtered exome capture dataset retained 638 045 SNPs
and 63 022 insertion/deletion polymorphisms (Tables S2 and S3)
segregating in the NAM founders.

Axiom assay. The DNA of NAM parental lines was genotyped
using an Axiom array resulting in genotype calls for 280 226 SNP
loci. Filtering for polymorphic sites segregating across the 29
founders resulted in 149 685 SNPs (Table S4). Due to the low
expected frequency of heterozygous sites in the F7 RILs, all
heterozygous genotype calls were re-called as missing data
points. The Axiom array SNPs have been mapped to the W7984
assembly (Chapman et al., 2015). A set of 118 189 SNPs with no
missing data was used to estimate the pairwise distances between
the 29 NAM founders and construct the neighbor-joining tree (Fig-
ure 1a) utilizing algorithms implemented in the R package ape.
The pairwise distance corresponded to the proportion of SNPs dif-
ferent in each comparison.

The IBD regions between Berkut and founder lines was esti-
mated using Beagle software (v. 4.1) (Browning and Browning,
2013) with the following parameters: window = 5000, over-
lap = 500, ibdlod = 3. The number of COs in the IBD regions in
each population was compared with the number of COs in the

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
The Plant Journal, (2018), 95, 1039–1054

Genetic architecture of wheat recombination rate 1049



regions showing no evidence of IBD using non-parametric Mann–
Whitney U-test.

Genotyping the NAM RILs and founders

Genotyping by sequencing. The libraries for sequencing
were generated using the PstI/MseI combination of enzymes, as
previously described (Saintenac et al., 2013), with the small modi-
fication, which includes performing size selection (270–300 bp)
using the Pippin Prep system (Sage Scientific, Beverly, MA, USA)
to further reduce the library complexity and generate higher read
coverage for accurate polymorphism calling. Twenty-six lanes of
HiSeq 2500 sequencing were performed, followed by quality filter-
ing and barcode separation (Table S5). To exclude the possibility
that the structural divergence of the NAM founders from the refer-
ence genome will result in missing genotyping data due to
unmappable reads, two pipelines capable of performing refer-
ence-free variant detection were used. The pipelines used are our
in-house custom pipeline described in Saintenac et al. (2013) and
the TASSEL UNEAK pipeline (Lu et al., 2013). The custom pipeline
was also used to generate the presence–absence variation (PAV)
calls, as described (Saintenac et al., 2013). The UNEAK pipeline
was used with the default settings for bi-parental mapping popu-
lations, and kept all polymorphisms that had no more than 90%
data missing for the population. In summary, for each population,
three sets of variant calls were derived: SNP calls from the custom
pipeline, SNP calls from the UNEAK pipeline, and the presence–
absence variation (PAV) calls from the custom pipeline. The three
datasets were filtered further to ensure that both SNPs and PAVs
segregate among the NAM parents and contain less than 20%
missing data. The obtained variant calls from each dataset were
combined with the SNP calls generated using the 90K iSelect
assay (see below) to create family-specific genetic maps. The vari-
ant calls with more than 20% missing data were combined with
the PAV dataset and used for mapping into recombination bins of
the newly created genetic maps following the previously
described procedure (Saintenac et al., 2013).

Cross-compared tag sequences across all populations using the
BLAT program (Kent, 2002) were used to reduce the redundancy
in the final GBS dataset included into the genetic maps. Tags that
showed 100% identity or had only one mismatch that corre-
sponded to the SNP call in the dataset were clustered together.
This procedure lead to identifying 495 758 unique tag-associated
variants (164 668 SNPs and 331 090 PAV) that segregate in at least
one bi-parental mapping population (Tables S6 and S7).

90K iSelect genotyping. In total, 500 ng of purified DNA of
each founder and all NAM RILs was used for 90K iSelect genotyp-
ing (Wang et al., 2014) at the USDA Genotyping laboratory
(Fargo). Raw image files were loaded into GenomeStudio Poly-
ploid Clustering v1.0 (Wang et al., 2014) to create a project for
each NAM family. Clustering followed the same three-phase pro-
tocol as described in Wang et al. (2014) (Wang et al., 2014). The
cutoff for allele frequency in clusters was ≥0.35 and ≤0.65, fol-
lowed by manual curation of markers with multiple clusters. All
markers that had exactly two clusters, a genotype call rate of
≥90%, and fell within the desired allele frequency range were
retained. Further filtering was performed using a custom Perl
script that eliminated markers in which the parents fell within the
same cluster, or in which the mean of one cluster’s Theta value
(measure of angle of deviation from pure fluorescence signal) was
less than two standard deviations away from the other cluster’s
Theta value. The final set of 57 657 high-quality polymorphic
SNPs that segregated in at least one bi-parental mapping

population (Table S8) was used for constructing family-specific
genetic maps.

Bi-allelic variation of iSelect SNP markers across all populations
was compared by a custom R script that used the boundaries of
the genotype clusters (defined by mean and two standard devia-
tions of Theta and R values of each cluster) in the bi-parental map-
ping populations to assess the correctness of cluster assignments
across all families. This procedure was utilized to ensure that all
retained markers have the common parent’s allele assigned to the
same cluster position in all families, and resulted in 31 657 high-
quality bi-allelic 90K iSelect markers (Table S9).

Cross-comparison of markers across all populations. As
GBS variant calling was performed on a per-family basis, in total
detecting 495 758 unique variants, SNP and PAV variant calling
was repeated using the entire dataset by combining reads from all
RILs. For this purpose, first, all GBS tags were clustered using CD-
Hit program at 97% identity generating 344 760 clusters. One tag
from each cluster was used as a reference to map all raw reads
from all individuals using Bowtie 2 v2.2.6 (Langmead and Salz-
berg, 2012) with program settings fast and local. Unified Geno-
typer from GATK v3.2-2 (McKenna et al., 2010) was used to call
SNPs across all 2100 NAM RILs and founders. Resulting variant
calls were retained only if they matched the calls generated using
the custom or UNEAK variant calling pipelines. Samtools v1.0 (Li
et al., 2009) was used to count reads that aligned to sequence tags
that corresponded to PAV. The present call was assigned if at least
one read was mapped to a tag. The PAV were considered vali-
dated if the present-absent calls matched the previous calls from
the custom pipeline in the original mapping population that
detected the PAV. Further, all SNP and PAV calls that matched
between the previously generated calls made on a per-family
basis and the calls generated in the combined dataset, were tested
for a 1:1 segregation ratio in individual families. Overall, 71 312
SNPs and 136 071 PAV were validated across the 2100 individuals
(Table S7). Including bi-allelic 90K SNP dataset, 235 599 markers
(frequency above 1%) were identified and called across 2100 NAM
RILs.

Genetic maps

The UltraDense Mapping Software, Multipoint v3.3 ULD (Ronin
et al., 2017) was used to group and order the genotype data in
each population. In the first step, the Multipoint algorithm detects
redundant markers with identical genotyping information across
the RILs. Next, a single delegate marker for each redundant group
was selected to have the least amount of missing data for the fam-
ily and used for map construction applying the recombination fre-
quency of 0.15 as a threshold for grouping into linkage groups.
The linkage groups were assigned to chromosomes using the pre-
viously ordered 90K SNP markers from the consensus wheat
genetic map (Wang et al., 2014). The developed genetic maps
were used for QTL mapping within each family (Table S11).

All high-quality redundant markers excluded from the map con-
struction process due to redundancy were assigned the same
chromosome and genetic position of the delegate marker that rep-
resented them. To add lower quality GBS markers with a higher
proportion of missing data to the map, a custom Perl script was
written to match the delegate markers based on 100% similarity of
the genotype segregation patterns for the progeny present in the
lower quality data. All matched SNPs were assigned the same
chromosome and genetic position of the delegate markers. PAV
tags were matched using the same custom Perl script only using
the presence genotype calls and treating all absent genotypes as
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missing data. At least 15 PAV tags should have the present call
and show 100% similarity to delegate marker tags to anchor a
PAV to the genetic map. All matched PAV received the chromo-
some and genetic position of the delegate markers (Table S11).

Mapping markers to reference genome scaffolds

All sequence tags and 90K SNP markers were mapped to the
W7984 wheat genome scaffolds (Chapman et al., 2015) using the
BLAT program (Kent, 2002). The W7984 reference genetic map is
the short-read sequence assembly genetically anchored to the
Synthetic-Opata M85 DH population. Markers were assigned the
genetic position on the W7984 map if the best BLAT hit was on
the same chromosome based on the NAM genetic map and had
≥95% similarity for ≥90% the length of sequence. Utilizing this
approach, 63% of all markers were mapped to the reference gen-
ome. To obtain the locations of annotated genes on the W7984
map, previously annotated contigs of the wheat cultivar Chinese
Spring (International Wheat Genome Sequencing Consortium,
2014) were mapped to PopSeq scaffolds (Chapman et al., 2015).

Recombination events in the NAM population’s RILs

A Perl script was written to count the total number of recombina-
tion events per chromosome for each individual in each family.
Recombination events were counted as a change in the parental
genotype phase ordered along the chromosome. The total num-
ber of CO events per RIL calculated from this script was used as
the phenotype for subsequent QTL mapping strategies. We com-
pared the total number of COs using both a single- and double-
marker parental genotype phase changes to define a CO event.
We found the population average using single-marker phase
switch was 51.9 + 0.2 COs, and using two consecutive markers
was 48.1 + 0.2 COs. The difference of 3.8 COs per RIL on average,
represents two true double CO events, or two single mis-geno-
typed or misplaced markers in the family genetic maps. We are
unable to discern if or in which these occurrences happen within
our dataset, hence we chose the conservative approach to define
a CO as a change in parental genotype phase for two consecutive
markers. Moreover, the selection of this CO estimation method is
corroborated by the consistency of CO counts in our study with
those estimated by immunolocalization of the MLH1 protein
(48 + 4) (Mart�ın et al., 2014). By reducing the probability of mis-
genotyped (error in genotype calling or alignment) or misplaced
markers (error in map construction), potentially affecting our
count of recombination events, we decrease false-negative rate,
but possibly miss few false positives, which could result from a
true double crossover. By noting which markers are associated
with the change of allele phase (CO event), it is possible to deter-
mine the incidence of crossovers at certain map positions based
on the marker position on the reference genome (Table S13).

Correlation of LD in founders with the meiotic

recombination rate

Pairwise LD between all SNPs within the same recombination bin
was estimated using the R package ‘genetics’. Linkage disequilib-
rium estimates for all pairwise combinations within recombination
bins were averaged to get R2 value for each bin and was used to
correlate with total recombination breakpoints within the same
recombination bins using Pearson’s correlation.

Prediction of deleterious SNP alleles

Utilizing the segregating SNPs detected by exome capture among
the founders, we identified potentially deleterious SNP alleles

using the SNPeffect program (De Baets et al., 2012). In total,
42 965 SNPs located within the annotated gene models in the
MIPS 2.2 genome annotation were mapped to the recombination
bins of the NAM population genetic map. SNPs were considered
potentially deleterious if the effect was determined ‘high’ using
the SnpEff annotation criteria. The highly recombining regions
were defined as the genetic recombination bins in the 10% distal
ends of the chromosome that contained over 75% of the recombi-
nation events (Figure 2b). We compared the proportion of pre-
dicted deleterious to non-deleterious SNPs in the highly
recombining regions to the proportion of predicted deleterious to
non-deleterious SNPs in rest of the genome using one-sided Fish-
er’s exact test, formally testing for a reduction in genetic load.

Recombination rate QTL mapping

The number of crossovers calculated from the custom Perl script
(see above recombination events in NAM RILs), which counts a
CO as a change in parental allele phase for two consecutive mark-
ers on each RIL’s genetic map, was summed across all 21 wheat
chromosomes to give the TCO phenotype for QTL mapping, simi-
lar to previous studies on the genetic control of recombination in
wheat (Esch et al., 2007). QTL mapping was performed using QTL
Cartographer v. 2.5_011 (statgen.ncsu.edu/qtlcart) using Compos-
ite Interval Mapping (CIM). Individuals that contained very high
numbers of missing genotypes (>100 missing genotypes, ~10%
total number of markers) were excluded from QTL analysis, and
those individual’s phenotypes were considered missing for map-
ping purposes. QTL mapping was performed using Model 6, the
standard model. The stepwise regression method for marker co-
variates was forward selection/backward elimination with P-value
<0.01 for marker inclusion and exclusion, and a window size of
10 cM. QTL mapping was performed for each family separately
using the TCO phenotype (Table S14). Genome-wide significance
thresholds were determined by permutations of genotype and
phenotype data for each family. Two threshold levels, 0.05 and
0.0018 were applied; the latter threshold is Bonferroni-corrected P-
value of 0.05/28. Confidence intervals to determine boundaries for
bi-parental QTL mapping regions were defined using 2 LOD inter-
vals (Table S18).

Additivity within bi-parental mapping family QTL

Additivity of alleles was assessed for the 15 families in which
more than one TCO QTL was mapped, and the four families in
which more than one trans-effect pCO QTL(see below) were
detected. Genotypes of the most significantly associated markers
were extracted and used to group RILs within the family based on
the segregation patterns of the recombination favoring alleles
within all the significant QTLs. Regression analyses were per-
formed between phenotypic values and the number of favorable
alleles. The resulting R2 values and P-values are presented in
Table S20. The significance threshold P < 0.05 and a positive
regression were used to confirm additivity.

Cis- and trans-acting QTL

QTL acting in cis- or trans-configuration were determined based
on previously described procedures (Esch et al., 2007). For this
purpose, the TCO phenotypes were recalculated for each RIL after
excluding the recombination events for the significant chromo-
somes, for pCO and dCO, phenotypes were recalculated for each
RIL after excluding the respective portion of the chromosome car-
rying the QTL. For all recalculated values of TCO, pCO, and dCO
another round of QTL mapping with QTL Cartographer v2.5.011,
using the same parameters as original QTL for model selection,
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window size, and P-value was carried out. Five percent signifi-
cance thresholds were determined by permutation for each family.
If the original QTL was detected again without the phenotypic con-
tribution from the chromosome or chromosomal region harboring
that QTL, we considered the QTL a trans-acting QTL; if the original
QTL was no longer detected, the QTL was considered a cis-acting
QTL (Tables S21 and S22).

QTL affecting distribution of recombination events along

the telomere-centromere axis

Recombination events were calculated separately for the pericen-
tromeric and distal regions of the wheat chromosome arms (pCOs
and dCOs, respectively). The approximate genetic location of the
centromere was estimated as previously described (Akhunov
et al., 2013) using the sequences of flow sorted chromosome arm
contigs (International Wheat Genome Sequencing Consortium,
2014). Using the position of centromere, each chromosome arm
was divided into the distal (1/3 of chromosome arm away from
centromere) and pericentromeric (2/3 of chromosome arms adja-
cent to the centromere) regions. This division was based on the
previous estimates of recombination rate distribution that showed
that most of the recombination is concentrated in the distal 1/3 of
the wheat chromosome arms (Akhunov et al., 2003). Recombina-
tion rate phenotypes were estimated separately for distal and peri-
centromeric regions based on W7984 coordinates and were used
for QTL mapping with ICIM software v 4.1.0.0 with default param-
eters stepping 1.0 cM and P-value of 0.001. Five percent signifi-
cance thresholds were determined by 1000 permutations
(Table S22), and confidence intervals were defined using 2 LOD
intervals. Additivity of QTL effects were determined in the same
manner as described for bi-parental TCO QTL in families that pos-
sessed more than one trans-acting pericentromeric QTL.

Joint inclusive composite interval mapping (JICIM)

The JICIM analysis in the NAM population was performed using
both TASSEL v.5.2.42 and the ICIM v 4.1.0.0 program taking into
account the nested family effect, following the procedures
described by Buckler et al. (2009) (Buckler et al., 2009). The step-
wise regression was run after marker genotypes were imputed
using Beagle version b4.r1274, and input into the TASSEL step-
wise function. In total, 17 273 markers were able to be ordered uti-
lizing reference sequence and contained no missing data.
Significant markers were selected by P-value into the model using
P-value <0.0001 determined by permutation. The variance
explained for the trait is the R2 value for the stepwise regression
model for each trait. JICIM mapping was performed using ICIM
mapping software v4.1.0.0 on ordered markers with no missing
data with settings of step size of 0.1 cM with a P-value threshold
of 0.001. Intervals were considered significant if the LOD was
greater than 15.5 for both TCO and dCO, and greater than 14.0 for
pCO, which were determined by permutation. Additive effects of
each JICIM QTL were estimated using the ICIM software.

Candidate genes affecting recombination

Gene models from the genomic regions spanning recombination
QTL identified using different QTL mapping methods were
extracted by using the annotation of the Chinese Spring reference
genome (International Wheat Genome Sequencing Consortium,
2014). The extracted genes were functionally annotated using
BLAST2GO v.4.1 (Conesa and G€otz, 2008). Genes that have been
previously shown to have an effect on recombination, or with
functional annotation that corresponds to crossover initiation or

chromatin remodeling, involved in DNA repair, DSB formation, or
cytokinesis, kinetochore, spindle, or microtubule formation, or
function as a topoisomerase were considered putative candidate
genes.

Availability of data and material

The raw sequence data can be accessed from the NCBI Short-Read
Archive database (BioProject SUB2540330 and PRJNA381058). All
datasets associated with the paper can be downloaded from the
project website: http://wheatgenomics.plantpath.ksu.edu/nam/.The
genotype calls for NAM RILs have been deposited to the T3 data-
base (triticeaetoolbox.org).

Materials requests

Materials requests should be addressed to Eduard Akhunov
(eakhunov@ksu.edu).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interests.

ACKNOWLEDGMENTS

This project was supported by the Agriculture Food Research
Initiative Competitive Grants 2017-67007-25939 (Wheat-CAP) and
2016-67013-24473 from the USDA National Institute of Food and
Agriculture. J.D. acknowledges funding provided by the Howard
Hughes Medical Institute and the Gordon and Betty Moore Foun-
dation. The research leading to these results have received fund-
ing from the French Government managed by the Research
National Agency (ANR) under the Investment for the Future pro-
gram (BreedWheat project ANR-10-BTBR-03), from FranceAgriMer,
French Funds to support Plant Breeding (FSOV) and from INRA.
Axiom genotyping was conducted on the genotyping platform
GENTYANE at INRA Clermont-Ferrand (gentyane.clermont.inra.fr).

AUTHORS’ CONTRIBUTIONS

K.W.J. performed genotyping, map construction, QTL

mapping and participated in drafting the manuscript. S.W.

and F.H. performed bioinformatics data analyses. S.C. per-

formed array-based SNP genotyping, variant calling, and

helped to select founder lines. Y.L. performed sequence

capture. E.P. generated and analyzed Axiom assay geno-

typing data. P.S. contributed to identifying meiotic candi-

date genes. J.S. contributed to constructing genetic

maps. A.A. contributed the exome capture sequencing and

analyses. N.K.B. created NAM populations. M.P. created

NAM populations and participated in data analyses. K.G.

created NAM populations. J.D. participated in data analy-

ses. L.T. created NAM populations and contributed to

genetic map construction. E.A. conceived the idea, coordi-

nated the project, analyzed data and wrote the manuscript.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this article.
Figure S1. Genetic diversity of founder lines.
Figure S2. Genetic diversity of NAM RILs.
Figure S3. Workflow of genotyping and QTL mapping experi-
ments.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2018), 95, 1039–1054

1052 Katherine W. Jordan et al.

http://wheatgenomics.plantpath.ksu.edu/nam/
mailto:


Figure S4. Distribution of QTL and recombination breakpoints for
homoeologous chromosome group 1.
Figure S5. Distribution of QTL and recombination breakpoints for
homoeologous chromosome group 2.
Figure S6. Distribution of QTL and recombination breakpoints for
homoeologous chromosomes group 3.
Figure S7. Distribution of QTL and recombination breakpoints for
homoeologous chromosomes group 4.
Figure S8. Distribution of QTL and recombination breakpoints for
homoeologous chromosomes group 5.
Figure S9. Distribution of QTL and recombination breakpoints for
homoeologous chromosomes group 6.
Figure S10. Distribution of QTL and recombination breakpoints for
homoeologous chromosomes group 7.
Figure S11. Distribution of recombination rate (cM/Mb), genetic
diversity, and deleterious allele density across the wheat chromo-
somes.
Figure S12. Correlation of genetic distance among the NAM foun-
ders and recombination rate.
Figure S13. The additive allelic effects for TCO QTL.
Figure S14. The additive allelic effects for trans-acting pCO QTL
detected in bi-parental mapping families.
Figure S15. The frequency of additive alleles across families
detected by joint mapping.
Figure S16. The frequency of the non-Berkut alleles with positive
effect on recombination.

Table S1. List of founder lines used to create spring wheat NAM
population.
Table S2. Exome capture SNPs detected in the founder lines.
Table S3. Exome capture inDels detected in the founder lines.
Table S4. Axiom array genotype calling of the founder lines.
Table S5. The list of recombinant inbred lines (RILs) that comprise
the NAM population.
Table S6. The list of unique SNP and PAV GBS tag names after
clustering and redundancy removal.
Table S7. The genotype matrix of all segregating bi-allelic GBS
SNPs and PAVs in the NAM population.
Table S8. 90K iSelect array genotype calling in the founder lines.
Table S9. The genotype matrix of all segregating bi-allelic 90K iSe-
lect SNPs in the NAM population.
Table S10. The number of markers genotyped using different
technologies segregating in each NAM family.
Table S11. Twenty-eight family-specific genetic maps.
Table S12. Summary of genetic map lengths per chromosome
and number of markers mapped per chromosome.
Table S13. Meiotic recombination breakpoints mapped to the
recombination bins.
Table S14. Recombination phenotypes used for QTL mapping.
Table S15. Family-specific summary of recombination traits used
for QTL mapping.
Table S16. GBS SNP and PAV variation counts per recombination
bin on the reference genome genetic map.
Table S17. The present call for PAV sites detected in the NAM
founders with respect to reference genome.
Table S18. QTL mapping results in the individual NAM families.
Table S19. Overlap of QTL regions mapped in the individual NAM
families.
Table S20. Additivity of recombination QTL.
Table S21. Classification of QTL into cis- and trans-acting loci.
Table S22. QTL controlling the distribution of distal and pericen-
tromeric CO.
Table S23. Stepwise regression (SR) analysis results.
Table S24. JCIM analyses and effect size estimates for each
family.

Table S25. Marker estimates for significant stepwise regression
markers by family.
Table S26. Regions of interest detected in multiple scans and mul-
tiple components of recombination.
Table S27. Conserved recombination candidate genes in regions
of interest.
Table S28. Candidate genes with more than one homoeolog in a
candidate region.

REFERENCES

Akhunov, E.D., Goodyear, A.W., Geng, S. et al. (2003) The organization and

rate of evolution of wheat genomes are correlated with recombination

rates along chromosome arms. Genome Res. 13, 753–763.
Akhunov, E.D., Akhunova, A.R., Anderson, O.D. et al. (2010) Nucleotide

diversity maps reveal variation in diversity among wheat genomes and

chromosomes. BMC Genom. 11, 702.

Akhunov, E.D., Sehgal, S., Liang, H. et al. (2013) Comparative analysis of

syntenic genes in grass genomes reveals accelerated rates of gene struc-

ture and coding sequence evolution in polyploid wheat. Plant Physiol.

161, 252–265.
Akhunova, A.R., Matniyazov, R.T., Liang, H. and Akhunov, E.D. (2010)

Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC

Genom. 11, 505.

Baets, G.De, Durme, J.Van, Reumers, J., Maurer-Stroh, S., Vanhee, P.,

Dopazo, J., Schymkowitz, J. and Rousseau, F. (2012) SNPeffect 4.0: on-

line prediction of molecular and structural effects of protein-coding vari-

ants. Nucleic Acids Res. 40, D935–D939.
Bajgain, P., Rouse, M.N., Tsilo, T.J. and Macharia, G.K. (2016) Nested asso-

ciation mapping of stem rust resistance in wheat using genotyping by

sequencing. PLoS ONE, 11, e0155760.

Bauer, E., Falque, M., Walter, H. et al. (2013) Intraspecific variation of

recombination rate in maize. Genome Biol. 14, 1–17.
Brown, P.J., Upadyayula, N., Mahone, G.S. et al. (2011) Distinct genetic

architectures for male and female inflorescence traits of maize. PLoS

Genet. 7, e1002383.

Browning, B.L. and Browning, S.R. (2013) Improving the accuracy and effi-

ciency of identity-by-descent detection in population data. Genetics, 194,

459–471.
Buckler, E.S., Holland, J.B., Bradbury, P.J. et al. (2009) The genetic architec-

ture of maize flowering time. Science, 325, 714–718.
Cavanagh, C.R., Chao, S., Wang, S. et al. (2013) Genome-wide comparative

diversity uncovers multiple targets of selection for improvement in hexa-

ploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. U. S. A. 110,

8057–8062.
Chapman, J.A., Mascher, M., Buluc�, A.N. et al. (2015) A whole-genome

shotgun approach for assembling and anchoring the hexaploid bread

wheat genome. Genome Biol. 16, 26.

Charlesworth, B. and Charlesworth, D. (1998) Some evolutionary conse-

quences of deleterious mutations. Genetica, 102, 3–19.
Choulet, F., Alberti, A., Theil, S. et al. (2014) Structural and functional parti-

tioning of bread wheat chromosome 3B. Science, 345, 1249721–1249721.
Colas, I., Macaulay, M., Higgins, J.D. et al. (2016) A spontaneous mutation

in MutL-Homolog 3 (HvMLH3) affects synapsis and crossover resolution

in the barley desynaptic mutant des10. New Phytol. 212, 693–707.
Comeron, J.M., Williford, A. and Kliman, R.M. (2008) The Hill – Robertson

effect : evolutionary consequences of weak selection and linkage in finite

populations. Heredity (Edinb), 100, 19–31.
Conesa, A. and G€otz, S. (2008) Blast2GO: a comprehensive suite for

functional analysis in plant genomics. Int. J. Plant Genomics, 2008,

619832.

Crismani, W., Girard, C., Froger, N., Pradillo, M., Santos, J.L., Chelysheva,

L., Copenhaver, G.P., Horlow, C. and Mercier, R. (2012) FANCM limits

meiotic crossovers. Science, 336, 1588–1590.
Dreissig, S., Fuchs, J., C�apal, P., Kettles, N., Byrne, E. and Houben, A. (2015)

Measuring meiotic crossovers via multi-locus genotyping of single pol-

len grains in barley. PLoS ONE, 10, 1–10.
Dvor�ak, J. and McGuire, P.E. (1981) Nonstructural chromosome differentia-

tion among wheat cultivars, with special reference to differentiation of

chromosomes in related species. Genetics, 97, 391–414.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
The Plant Journal, (2018), 95, 1039–1054

Genetic architecture of wheat recombination rate 1053



Dvor�ak, J., Akhunov, E.D., Akhunov, A.R., Deal, K.R. and Luo, M.-C. (2006)

Molecular characterization of a diagnostic DNA marker for domesticated

tetraploid wheat provides evidence for gene flow from wild tetraploid

wheat to hexaploid wheat. Mol. Biol. Evol. 23, 1386–1396.
Emmanuel, E., Yehuda, E., Melamed-bessudo, C., Avivi-ragolsky, N. and

Levy, A.A. (2006) The role of AtMSH2 in homologous recombination in

Arabidopsis thaliana. EMBO Rep. 7, 100–105.
Esch, E., Szymaniak, J.M., Yates, H., Pawlowski, W.P. and Buckler, E.S.

(2007) Using crossover breakpoints in recombinant inbred lines to iden-

tify quantitative trait loci controlling the global recombination frequency.

Genetics, 177, 1851–1858.
Gardner, K.A., Wittern, L.M. and Mackay, I.J. (2016) A highly recombined,

high-density, eight-founder wheat MAGIC map reveals extensive segre-

gation distortion and genomic locations of introgression segments. Plant

Biotechnol. J. 750, 1406–1417.
Hartfield, M. and Gl�emin, S. (2014) Hitchhiking of deleterious alleles

and the cost of adaptation in partially selfing species. Genetics, 196,

281–293.
Higgins, J.D., Buckling, E.F., Franklin, F.C.H. and Jones, G.H. (2008)

Expression and functional analysis of AtMUS81 in Arabidopsis meio-

sis reveals a role in the second pathway of crossing-over. Plant J. 54,

152–162.
Higgins, J.D., Perry, R.M., Barakate, A., Ramsay, L., Waugh, R., Halpin, C.,

Armstrong, S.J. and Franklin, F.C.H. (2012) Spatiotemporal asymmetry

of the meiotic program underlies the predominantly distal distribution of

meiotic crossovers in barley. Plant Cell, 24, 4096–4109.
Hill, W. and Robertson, A. (1966) The effect of linkage on limits to artificial

selection. Genet. Res. 8, 269–294.
Ines, O. Da, Degroote, F., Goubely, C., Amiard, S., Gallego, M.E. and White,

C.I. (2013) Meiotic recombination in arabidopsis is catalysed by DMC1,

with RAD51 playing a supporting role. PLoS Genet. 9, e1003787.

International Wheat Genome Sequencing Consortium (2014) A chromo-

some-based draft sequence of the hexaploid bread wheat genome.

Science, 345, 1251788.

Jordan, K., Wang, S., Lun, Y. et al. (2015) A haplotype map of allohexaploid

wheat reveals distinct patterns of selection on homoeologous genomes.

Genome Biol. 16, 48.

Kent, W.J. (2002) BLAT–the BLAST-like alignment tool. Genome Res. 12,

656–664.
Kirik, A., Pecinka, A., Wendeler, E. and Reiss, B. (2006) The chromatin

assembly factor subunit FASCIATA1 is involved in homologous recombi-

nation in plants. Plant Cell, 18, 2431–2442.
Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.
Lawrence, E.J., Griffin, C.H. and Henderson, I.R. (2017) Modification of meiotic

recombination by natural variation in plants. J. Exp. Bot. 20, 5471–5483.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,

G., Abecasis, G. and Durbin, R. (2009) The sequence alignment/map for-

mat and SAMtools. Bioinformatics, 25, 2078–2079.
Lieberman-Lazarovich, M., Melamed-Bessudo, C., De Pater, S. and Levy, A.

A. (2013) Epigenetic alterations at genomic loci modified by gene target-

ing in Arabidopsis thaliana. PLoS ONE, 8, 1–11.
Liu, S., Yeh, C.-T., Ji, T., Ying, K., Wu, H., Tang, H.M., Fu, Y., Nettleton, D.

and Schnable, P.S. (2009) Mu transposon insertion sites and meiotic

recombination events co-localize with epigenetic marks for open chro-

matin across the maize genome. PLoS Genet. 5, e1000733.

Liu, Q., Zhou, Y., Morrell, P.L., Gaut, B.S. and Ge, S. (2017) Deleterious vari-

ants in Asian Rice and the potential cost of domestication. Mol. Biol.

Evol. 34, 908–924.
Lu, F., Lipka, A.E., Glaubitz, J., Elshire, R., Cherney, J.H., Casler, M.D., Buck-

ler, E.S. and Costich, D.E. (2013) Switchgrass genomic diversity, ploidy,

and evolution: novel insights from a network-based SNP discovery pro-

tocol. PLoS Genet. 9, e1003215.

Lynn, A., Ashley, T. and Hassold, T. (2004) Variation in human meiotic

recombnation. Annu. Rev. Genomics Hum. Genet. 5, 317–349.
Maccaferri, M., Ricci, A., Salvi, S. et al. (2015) A high-density, SNP-based

consensus map of tetraploid wheat as a bridge to integrate durum

and bread wheat genomics and breeding. Plant Biotechnol. J. 13,

648–663.
Mart�ın, A.C., Shaw, P., Phillips, D., Reader, S. and Moore, G. (2014) Licens-

ing MLH1 sites for crossover during meiosis. Nat. Commun. 5, 1–5.

Mcclosky, B. and Tanksley, S.D. (2013) The impact of recombination on

short-term selection gain in plant breeding experiments. Theor. Appl.

Genet. 126, 2299–2312.
McKenna, A., Hanna, M., Banks, E. et al. (2010) The genome analysis toolkit:

a MapReduce framework for analyzing next-generation DNA sequencing

data. Genome Res. 20, 1297–1303.
Melamed-bessudo, C., Shilo, S. and Levy, A.A. (2016) Meiotic recombination

and genome evolution in plants. Curr. Opin. Plant Biol. 30, 82–87.
Mercier, R., Mezard, C., Jenczewski, E., Macaisne, N. and Grelon, M. (2015)

The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 297–
327.

Mezmouk, S. and Ross-Ibarra, J. (2014) The pattern and distribution of dele-

terious mutations in maize. G3 (Bethesda), 4, 16, 3–171.
Ogut, F., Bian, Y., Bradbury, P.J. and Holland, J.B. (2015) Joint-multiple fam-

ily linkage analysis predicts within-family variation better than single-

family analysis of the maize nested association mapping population.

Heredity (Edinb), 114, 552–563.
Pfeifer, M., Kugler, K.G., Sandve, S.R., Zhan, B., Rudi, H., Hvidsten, T.R.,

Mayer, K.F.X. and Olsen, O.-A. (2014) Genome interplay in the grain tran-

scriptome of hexaploid breadwheat. Science (80-.). 345, 1250091–1250091.
Pradillo, M., Oliver, C., Romero, C., Cun, N., Santos, J.L. and Lo, E. (2012)

Looking for natural variation in chiasma frequency in Arabidopsis thali-

ana. J. Exp. Bot. 63, 887–894.
Rodgers-Melnick, E., Bradbury, P.J., Elshire, R.J., Glaubitz, J.C., Acharya,

C.B., Mitchell, S.E., Li, C., Li, Y. and Buckler, E.S. (2015) Recombination

in diverse maize is stable, predictable, and associated with genetic load.

Proc. Natl. Acad. Sci. U. S. A. 112, 3823–3828.
Ronin, Y.I., Mester, D.I., Minkov, D.G., Akhunov, E. and Korol, A.B. (2017)

Building ultra-high density linkage maps based on efficient filtering of

trustable markers. Genetics, 206, 1285–1295.
Saintenac, C., Faure, S., Remay, A., Choulet, F., Ravel, C., Paux, E., Balfourier,

F., Feuillet, C. and Sourdille, P. (2011) Variation in crossover rates across a

3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a

meiotic recombination hotspot. Chromosoma, 120, 185–198.
Saintenac, C., Jiang, D., Wang, S. and Akhunov, E. (2013) Sequence-based

mapping of the polyploid wheat genome. G3: Genes - Genomes - Genet-

ics, 3, 1105–1114.
Shilo, S., Melamed-Bessudo, C., Dorone, Y., Barkai, N. and Levy, A.A. (2015)

DNA crossover motifs associated with epigenetic modifications delineate

open chromatin regions in arabidopsis. Plant Cell, 27, 2427–2436.
Wang, S., Wong, D., Forrest, K. et al. (2014) Characterization of polyploid

wheat genomic diversity using a high-density 90 000 single nucleotide

polymorphism array. Plant Biotechnol. J. 12, 787–796.
Wang, K., Wang, C., Liu, Q., Liu, W. and Fu, Y. (2015) Increasing the genetic

recombination frequency by partial loss of function of the synaptonemal

complex in rice. Mol. Plant, 8, 1295–1298.
Wijnker, E., James, G.V., Ding, J. et al. (2013) The genomic landscape of

meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife,

2013, 1–22.
Wingen, L.U., West, C., Leverington-Waite, M. et al. (2017) Wheat landrace

genome diversity. Genetics, 205, 1657–1676.
Yandeau-Nelson, M.D., Nikolau, B.J. and Schnable, P.S. (2006) Effects of

tran-sacting genetic modifiers on meiotic recombination Across the a1–
sh2 interval of maize. Genetics, 174, 101–112.

Yang, J., Mezmouk, S., Baumgarten, A., Buckler, E.S., Guill, K.E., McMullen,

M.D., Mumm, R.H. and Ross-Ibarra, J. (2017) Incomplete dominance of

deleterious alleles contributes substantially to trait variation and hetero-

sis in maize. PLoS Genet., 13, 1–21.
Yu, J., Holland, J.B., McMullen, M.D. and Buckler, E.S. (2008) Genetic

design and statistical power of nested association mapping in maize.

Genetics, 178, 539–551.
Zhou, Y., Massonnet, M., Sanjak, J.S., Cantu, D. and Gaut, B.S. (2017) Evo-

lutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication.

Proc. Natl Acad. Sci. 114, 11715–11720.
Ziolkowski, P.A., Berchowitz, L.E., Lambing, C. et al. (2015) Juxtaposition of

heterozygous and homozygous regions causes reciprocal crossover remod-

elling via interference duringArabidopsismeiosis.Elife, 4, 1–29.
Ziolkowski, P.A., Underwood, C.J., Lambing, C. et al. (2017) Natural varia-

tion and dosage of the HEI10 meiotic E3 ligase control Arabidopsis cross-

over recombination. Genes Dev. 31, 306–317.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2018), 95, 1039–1054

1054 Katherine W. Jordan et al.


